
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
H. Ghodselahi, Y. Maus November 24, 2016

Algorithm Theory, Winter Term 2016/17
Problem Set 4

hand in (hard copy or electronically) by 09:55, Thursday December 8, 2016,
tutorial session will be on December 12, 2016

Exercise 1: Amortization (using Accounting) (8 points)

Suppose we perform a sequence of n operations on an (unknown) data structure in which the
i-th operation costs i if i is an exact power of 2, and 1 otherwise.

Use the accounting method to determine the amortized cost per operation.

Exercise 2: Amortization (using Potential Function) (8 points)

We are given a data structure D, which supports the operations put and flush. The operation
put stores a data item in D and has a running time of 1. Further, if D contains k ≥ 0 items, the
operation flush deletes dk/2e of the k data items stored in D and its running time is equal to
k.

Prove that both operations have constant amortized running time by using the potential function
method.

Exercise 3: Fibonacci Heaps (12 points)

Fibonacci heaps are only efficient in an amortized sense. The time to execute a single, individ-
ual operation can be large. Show that in the worst case, the delete-min and decrease-key
operations can require time Ω(n) (for any heap size n).

Hint: Describe an execution in which there is a delete-min operation that requires linear time.
Also, describe an execution in which there is a decrease-key operation that requires linear time.

1



Exercise 4: Union-Find (12 points)

Assume that we are given a union-find data structure which is implemented as a disjoint-set
forest. In the lecture, we have seen that when using path compression and the union-by-rank
heuristics, the total running time of any m operations is Θ (m · α(m,n)) (where α(m,n) is the
inverse of the Ackermann function and n is the number of make-set operations).

We now consider any sequence of m union-find operations, where all the make-set and
union operations appear before any of the find-set operations. Let f be the number of
find-set operations. Show that the total running time of the f find-set operations is only
O(f + n) if both path compression and union-by-rank heuristics are used. What happens in the
same situation if we use only the path compression heuristic (without union-by-rank)?

Remark: In the union-by-rank heuristic, each tree of the disjoint-forest representation has a
rank which is computed as follows. When a tree of size 1 is created in a make-set operation,
its rank is 0. Further, whenever two trees T1 and T2 are merged in a union operation, the tree
of smaller rank is attached to the tree of larger rank. If T1 and T2 have different ranks, the rank
of the combined tree is equal to the larger of the two ranks of T1 and T2. Otherwise, if they both
have the same rank, the rank of the combined tree is the rank of the two trees plus 1.

2


